比特派官网下载app正版|atr
ATR真实波幅指标:一个成功的日内交易员必备的核心利器 - 知乎
ATR真实波幅指标:一个成功的日内交易员必备的核心利器 - 知乎切换模式写文章登录/注册ATR真实波幅指标:一个成功的日内交易员必备的核心利器九云狼期权交易者ATR的含义真实波幅均值(ATR)起初应用于股票市场分析,是取一定时间周期内的股价波动幅度的移动平均值,主要用于研判买卖时机,是显示市场变化率的反趋向指标,由威尔德(J. Welles Wilder)1978年于《New Concepts in Technical Trading Systems》一书中提出,目前已成为众多指标经常引用的技术量。真实波动幅度均值(ATR)是优秀的交易系统设计者的一个不可缺少的工具,它称得上是技术指标中的一匹真正的劲马。每一位系统交易者都应当熟悉ATR及其具有的许多有用功能。其众多应用包括:参数设置,入市,止损,获利等,甚至是资金管理中的一个非常有价值的辅助工具。平均真实波幅(ATR)的计算方法: 1、当前交易日的最高价与最低价间的波幅 2、前一交易日收盘价与当个交易日最高价间的波幅 3、前一交易日收盘价与当个交易日最低价间的波幅今日振幅、今日最高与昨收差价,今日最低与昨收差价中的最大值,为真实波幅, 在有了真实波幅后,就可以利用一段时间的平均值计算ATR了。至于用多久计算,不同的使用者习惯不同,10天、20天乃至65天都有。求真实波幅的N日移动平均 参数:N 天数,一般取14 计算公式: TR : MAX(MAX((HIGH-LOW),ABS(REF(CLOSE,1)-HIGH)),ABS(REF(CLOSE,1)-LOW)); ATR : MA(TR,N)ATR上真实波幅,波动区间收缩背景:许多技术派已经注意到大幅价格运动往往出现在价格平静的横盘整理之后。通过比较短期ATR和长期ATR可以非常容易的鉴别出价格平静的横盘整理区间,比如当10期ATR小于等于0.75倍50期ATR时,就表明近期市场不寻常的平静。这就是一个背景条件,表明关键的入场时机就在眼前 本文不加说明,一般采用的就是20日数据计算。ATR的用途妙用一:合理分配资金 在进行短线交易时,不少投资者都会同时持有2个甚至更多的股票。如何在多个股票之间分配资金呢?均分法是大多数人选择的方法。若准备同时买股票A和股票B,手头有10万元资金,那么就两者各买5万元。如此算法固然简单,但却有一个重大问题———不同的股票股性不同,有的很活跃波动很大,有的却往往波幅较小,若这两类股票用同样的资金购买,那么股性活跃的股票带来的亏损和盈利都会超过股性相对不活跃的。假设你选上涨股的成功率有60%,看起来是不错的水准了,但若不幸成功的股票涨得少,失败的却是股性活跃会大跌的股票,总账依旧会亏损。 要解决这种问题,就可以利用ATR来分配资金了,只要我们让所有资金的固定百分比与某个股票1个ATR的波动对应,那么这个问题就会得到解决。以上证 50ETF为例,周四ATR为0.152元,相当于收盘价的4.08%;而中信证券,周四ATR为4.741元,相当于收盘价的6.69%,显然后者股性比前者更活跃。假设手头有100万元资金,我们就可以设定让上述两个股票1个ATR的波动等价于总资金1%的波动,那么100万元的1%为1万元,10000÷0.152=65789.47,即我们应当买入65700股上证50ETF,按照当日3.721元收盘价计算,涉及资金24.45万元;与此同时,10000÷4.741=2109.26,即我们应当买入2100股中信证券,按照当日70.85元收盘价计算,涉及资金14.88万元。如此,通过资金分配的不同,我们大体可以使这两个股票的正常波动对投资组合的影响大致相等,不会过分受到中信证券的影响。 妙用二:动态调整止损 除非你是巴菲特这样的绝对价值投资者,否则对投资者设定止损是极其重要的事情,10%的亏损只需要11%的盈利即可弥补,20%的亏损,则需要25% 的盈利才可弥补,50%的亏损,必须要100%的盈利才能弥补。及时止损,是为下一次交易留下足够的弹药,对于长期获利,意义重大。当然,不同的交易者,往往会使用不同的止损方法,比如选股大师欧奈尔便推荐投资者使用8%作为止损线,一旦亏损超过此数目,便割肉离场。 利用固定比例作为止损,固然简单易算,但问题还是在于前面讲到的股性区别。若上证50ETF这样波动较小的品种和中信证券这样波动较大的品种都选择8%作为止损线,显然不太合理。这时候,ATR就有用武之地了。 利用ATR设定止损其实很简单,大体就是选择一个基准价位,然后减去一个系数调整后的ATR。比如有的投资者喜欢选择前一日的收盘价,有的投资者喜欢选择前一日的最高价作为基准价位,至于减去的值,快进快出的交易者会选择0.8,喜欢做长线交易的会选择2甚至3。 还是以中信证券周四收盘后为例,假如某个投资者对其后市看好准备周五买入,那么可以同时先利用ATR计算止损价。投资者可以选择周四的收盘价 70.85元作为基准,若热爱快进快出则减去0.8×ATR,即0.8×4.741=3.768元,则若中信证券下跌超过5.3%,价格跌破67.08元便止损。于此相比,若买入50ETF,同样使用0.8系数,那么按照周四3.721元收盘价和0.152元的ATR,0.8×0.152=0.1216 元,即50ETF下跌3.27%,价格跌破3.60元便止损。可见,虽然使用同样的系数,但是ATR会根据投资品种的股性自动调整实际的百分比止损值,这就比固定使用8%作为止损更具灵活性了,避免对某些股票止损设置过小,股性活跃的过早被震荡出来,同时又对某些股票止损设置过大,股性不活跃的止损过慢,利润被侵蚀过多。 妙用三:动态调整仓位 对于利用ATR来分配资金设定入市资金的投资者而言,ATR的另外一个效果就是可以动态调整仓位。就以前一例中100万元资金按照1%资金=1ATR 波动共买入65700股上证50ETF,涉及资金24.45万元的例子为例。假如买完之后上证50ETF后此品种长期盘整,既无大涨也无大跌时,这时 ATR就会进一步下跌,比如由0.152元下降至0.120元时,投资者便可重新计算仓位。依旧按照1%资金=1ATR波动计算,则可持有83000股,此前已经买入65700股,则投资者还可加仓17300股。 有经验的投资者都明白,长期盘整往往是大方向出现的前兆。若是向下,由于投资者按照ATR设定止损,若止损定为2ATR,虽然股数增加了,但因为 ATR对应的止损实际百分比变小,所以亏损的资金总额依然不变,按照1%=1ATR,则止损的损失就是总资金的2%。但是若方向朝上,则后面加仓的部分便可以为投资者带来额外的收益,使持仓的盈利能力进一步加强。ATR的优势(实盘测试后的效果)1,让自己更加容易出场。2,减少自己的盲目进场心,3,扩大自己的资金利用率对于ATR这种指标来说,希望大家要客观在客观,交易是客观因素越多,你的系统越来越稳定,就如黄金的纯度越高越有价值,自己的交易系统也是同等道理,客观占比越多,你的系统可经常住的市场考验越好。发布于 2021-02-18 19:01期货赞同 444 条评论分享喜欢收藏申请
趋势跟踪利器六——ATR指标 - 知乎
趋势跟踪利器六——ATR指标 - 知乎首发于趋势跟踪切换模式写文章登录/注册趋势跟踪利器六——ATR指标张金彪以交易为生:http://guhai66.com在前文《趋势跟踪利器之四——均线参数的选择》中,讲到了技术分析鼻祖道氏理论把趋势分为以下三个级别:长期趋势:也称为主要趋势,是指持续时间超过1年的趋势,股市里通常说的牛市、熊市,就是指的长期趋势。长线投资者一般关注的就是长期趋势。中期趋势:也称为中级趋势,持续时间3周到数月。这是本人趋势跟踪主要关注的。日间波动:也成为日间杂波,持续时间几天以内。这是短线投机者关注的。对于本人来说,是需要过滤掉的。作为趋势跟踪交易,我们需要关注的是中期及以上趋势,需要忽略过滤掉日间杂波。那么怎么才能比较有效的把日间杂波过滤掉呢,可以用到一个比较经典的指标:ATR。ATR指标,全称平均真实波动幅度指标(Average true range),它由J. Welles Wilder开发,并在他的书《技术分析系统的新概念》(1978年)中首次提到。该指标是N天的价格移动平均数平均后的交易波动幅度,一般时间周期为14个交易日。当然,具体数值取决于你的交易策略。ATR是在外汇交易中是一个常用指标,也是股票期货中的一个比较经典的指标,基本上所有的行情软件都会自带。下图是通达信软件的ATR指标。平均真实波动幅度均值(ATR)的计算方法首先计算波动幅度TR:单根K线图最高点和最低点间的距离真实波动幅度,是以下三个波动幅度的最大值:当天最高点和最低点间的距离。前一天收盘价和当天最高价间的距离。前一天收盘价和当天最低价间的距离。在波动幅度TR的基础上,取一定时间段内(一般软件默认是14个周期)TR的平均值,即可得到平均真实波动幅度ATR。平均真实波动幅度均值(ATR)的作用ATR指标能够有效帮助交易者预判价格在未来可能的波动幅度,对于设置止损或止盈目标非常有帮助。此外,该指标的波动幅度的概念表示可以显示出交易者的期望和热情,反映市场交易的活络程度。波动率水平越高,ATR值越高,反之,波动率水平越低,ATR值也越低。该指标本身并不产生买进或卖出信号。更应该说这是一个辅助性指标。在趋势跟踪交易中,我们则可以借助ATR指标来过滤日间杂波首先,我们采用前面介绍过的均线或者自适应均线作为价格运行的中轴,价格总是围绕着这个中轴运行的,然后我们就可以用价格/均线之间的价差和ATR的关系来判断价格运行的状态:当价格运行在单边趋势过程中时,均线成上涨或下跌状态,而价格在均线上方或下方运行。价格不可能直线上涨或下跌,总会存在一定的波动,从而围绕着均线上涨或者下跌。如果价格和均线的价差在一定倍数的ATR的范围内,我们可以认为这只是趋势运行过程中的杂波,可以不用理会,继续按照单边趋势的策略操作。当价差超过一定倍数的ATR的范围时(远离均线),如果是顺着趋势的方向运行的,则可以认为是趋势加速,如果是逆着趋势的方向运行的,则可以认为趋势可能发生改变,需要引起注意,采取对应的策略。当价格运行在横盘震荡过程中时,均线成横盘状态,同样的,价格也不可能直线运行,也会存在一定的波动,价格围绕着均线运行。如果价格和均线之间的价差在一定倍数的ATR范围内,我们可以认为仍然还是在震荡,可以不用理会,继续按照震荡的策略操作。当价差超过一定倍数的ATR范围时(突破箱体),则可以认为震荡结束,价格会按照突破的方向进入单边趋势过程。交易策略上可以开始转为单边趋势策略。ATR通道指标按照上述思路,我们可以把均线和ATR进行组合,形成一个新的指标,我称之为ATR通道指标。比如下图就是移动平均线和ATR组合而成的ATR通道指标:关于ATR通道指标的用法,可以参考文章《ATR通道指标使用说明》,这里不再重复。发布于 2021-05-02 08:24技术分析趋势跟踪(书籍)赞同 7112 条评论分享喜欢收藏申请转载文章被以下专栏收录趋
图表背后的秘密 | 技术指标讲解:ATR指标 ATR(Average True Range)被称为平均真实波幅。起初应用于股票市场分析,主要用于研判买卖时机,是显示市... - 雪球
的秘密 | 技术指标讲解:ATR指标 ATR(Average True Range)被称为平均真实波幅。起初应用于股票市场分析,主要用于研判买卖时机,是显示市... - 雪球首页行情行情中心筛选器新股上市买什么交易A股交易基金交易私募中心下载App扫一扫,下载登录/注册火象趣交易()发布于2022-05-31 14:06来自雪球关注图表背后的秘密 | 技术指标讲解:ATR指标来源:雪球App,作者: 火象趣交易,(https://xueqiu.com/8694603268/221424142)ATR(Average True Range)被称为平均真实波幅。起初应用于股票市场分析,主要用于研判买卖时机,是显示市场变化率的反趋向指标,由威尔德1978年在其书中提出,目前已成为众多指标经常引用的技术量。 ATR指标的计算原理和代码实现 ATR指标的计算步骤可大致分为两步:第一步:计算真实波幅(TR)。即今日振幅(MAX((HIGH-LOW))、今日最高与昨收差价(ABS(REF(CLOSE,1)-HIGH))),今日最低与昨收差价(ABS(REF(CLOSE,1)-LOW))中的最大值。TR=MAX(MAX((HIGH-LOW),ABS(REF(CLOSE,1)-HIGH)),ABS(REF(CLOSE,1)-LOW))第二步:利用一段时间的均值计算平均真实波幅(ATR)。参数N为K线数,一般取14。也可根据习惯的不同,使用10/20/60等值。ATR=MA(TR,N) 我们使用中信证券(600030)2021-03-01至2022-3-22行情信息来演示ATR指标的计算和作图。Ta-lib作为专业的金融指标计算的三方库被广泛使用。在常见的技术指标计算中调用Ta-lib库可简化编程过程。使用Ta-lib计算ATR时,只需传入最高价、最低价、收盘价序列,并指定窗口长度(默认值为14)。 ATR指标的应用 第一,合理分配资金调整仓位。不少投资者会同时持有多个资产,许多投资者只用简单的均分法在多个资产之间分配资金。但由于资产波动情况不同,均分法下,高波动的资产对投资组合的影响更大。但使用ATR来分配资金,只需将所有资金的固定百分比和每个资产的1个ATR波动对应。让高波动的资产配置较少资金,让低波动资产配置较多资金,这样投资组合可以平衡不同资产的波动,不会过分收到高波动资产的影响。第二,动态止损。利用固定比例作为止损,固然简单易算,但对于波动不同的标的资产使用固定的止损比例并不合理。此时,ATR止损就更具优势。简单的讲,利用ATR设定止损,就是选择一个基准价位,然后减去一个系数调整后的ATR。比如有的投资者喜欢选择前一日的收盘价,有的投资者喜欢选择前一日的最高价作为基准价位,至于减去的值,快进快出的交易者会选择0.8,喜欢做长线交易的会选择2甚至3。此处,我们依旧使用中信证券(600030)2021-03-01至2022-3-22行情信息,来演示如何试用ATR指标绘制移动止损线。我们使用上一日收盘价减掉1倍、2倍和3倍ATR值作为移动止损线,来查看止损效果。使用1倍ATR做止损时,比较准确地识别了行情的下跌,并做出止损,但随着乘数的增加、止损宽度随之增大,止损效果有所下降。当然,具体的乘数的选取需要把投资者根据自己的投资风格和手中的资产,进行多次回测,寻找一个较好的ATR止损的乘数参数,应该避免参数过于敏感或过于迟钝。第三,趋势确认。在平滑的趋势中,ATR指标应该是平稳下降的;若趋势有了改变,ATR指标往往快速上升,成为趋势交易者警惕的变盘信号。相对于SD而言,ATR是一个更好的波动率测度指标,ATR则能更快更稳定的度量当前价格运行方向上的正常波动状态,其自身的波动较小,更适合用来趋势确认。 ATR指标的优势和局限性 综合来看,ATR指标是一个常用的、且效果较好的技术指标。常用于趋势确认、资金分配、仓位管理、移动止损。能较快较稳定的度量当前价格运行方向上的波动状态。但ATR并不能给出买卖方向的具体建议,只能起到锦上添花的作用,需要搭配其他技术指标使用。一文详解红外衰减全反射(ATR)的原理与应用 - 知乎
一文详解红外衰减全反射(ATR)的原理与应用 - 知乎切换模式写文章登录/注册一文详解红外衰减全反射(ATR)的原理与应用测试狗科研服务已认证账号1 引言红外光谱是分析化合物结构的重要手段。常规的透射法使用压片或涂膜进行测量,对某些特殊样品( 如难溶、难熔、难粉碎等的试样) 的测试存在困难。为克服其不足,20 世纪60 年代初出现了衰减全反射( Attenuated Total Refraction ,ATR) 红外附件,但由于受当时色散型红外光谱仪性能的限制,ATR 技术应用研究领域比较局限。80 年代初将ATR 技术开始应用到傅里叶变换红外光谱仪上,产生了傅里叶变换衰减全反射红外光谱仪(ATR-FTIR)。ATR 的应用极大地简化了一些特殊样品的测试,使微区成分的分析变得方便而快捷,检测灵敏度可达10-9 g 数量级,测量显微区直径达数微米。ATR 附件基于光内反射原理而设计。从光源发出的红外光经过折射率大的晶体再投射到折射率小的试样表面上,当入射角大于临界角时,入射光线就会产生全反射。事实上红外光并不是全部被反射回来,而是穿透到试样表面内一定深度后再返回表面。在该过程中,试样在入射光频率区域内有选择吸收,反射光强度发生减弱,产生与透射吸收相类似的谱图,从而获得样品表层化学成份的结构信息。ATR-FTIR 作为红外光谱法的重要实验方法之一,克服了传统透射法测试的不足,简化了样品的制作和处理过程,极大地扩展了红外光谱的应用范围。它已成为分析物质表面结构的一种有力工具和手段,在多个领域得到了广泛应用。2 红外衰减全反射简介2.1 红外共振吸收原理20 世纪50 年代,商品红外光谱仪问世,它以棱镜作色散元件,缺点是光学材料制造困难分辨率低且仪器要求严格恒温恒湿。60 年代发展了以光栅作为色散元件的第二代红外光谱仪,它弥补了棱镜红外光谱仪的缺点因此很快取代了它。70 年代出现了基于干涉调频分光的傅里叶变换红外光谱仪(简称傅里叶红外光谱仪) ,使仪器性能得到很大提高。傅里叶变换红外光谱仪没有色散元件,主要由光源、干涉仪、试样插入装置、检测器、计算机和记录仪等部分组成,其工作原理如图1所示。图1傅里叶变换红外光谱仪的排列和工作示意图由红外光源发出的红外辐射经准直镜准直后变为平行红外光束进入干涉仪,经调制后得到一束干涉光; 该干涉光通过试样后成为带有试样信息的的干涉光被检测器检测。检测器将干涉光信号变为电信号,由计算机采集,得到带有试样信息的时域干涉图,即时域谱。时域谱难以辨认,经过计算机进行傅里叶变换的快速计算,将其转换成以透光率或吸收强度为纵坐标,以波束为横坐标的红外光谱图,即频域谱。2.2 红外衰减全反射的原理常规的透射式红外光谱以透过样品的干涉辐射所携带的物质信息来分析该物质,要求样品的红外线通透性好。但很多物质如纤维橡胶等都是不透明的,难以用透射式红外光谱来测量,另外有时人们对分析物表面感兴趣,在这些情况下,红外反射就成为有力的分析工具。反射光谱包括内反射光谱、镜反射光谱和漫反射光谱,其中以内反射光谱技术(Internal Reflection Spectroscopy) 应用为多。内反射光谱也叫衰减全反射(ATR)光谱,简称ATR 谱,它以光辐射两种介质的界面发生全内反射为基础。如图1 所示,当满足条件: 介质1( 反射元件) 的折射率n1大于介质2(样品)的折射率n2,即从光密介质进入光疏介质,并且入射角θ 大于临界角θc(sinθc = n2/n1) 时,就会发生全反射。图2 红外光在界面处发生全反射示意图由于绝大多数有机物的折射率在 1.5 以下,因此根据n1 > n2要求,要获得衰减全反射谱需要试样折射率大于 1.5 的红外透过晶体,常用的ATR 晶体材料有: KSR-5、锗(Ge) 、氯化银(AgCl) 、溴化银(AgBr) 、硅(Si) 等,尤以前两种应用多。KRS-5 是一种混晶,有毒。通常将ATR 晶体做成菱形体,样品可以放到晶体的两个较大的侧面上。晶体的几何尺寸受到全反射次数和光谱仪光源光斑大小的约束。如果在入射辐射的频率范围内有样品的吸收区,则部分入射辐射被吸收,在反射辐射中相应频率的部分形成吸收带,这就是ATR 谱。2.3 红外衰减全反射的结构本文介绍的是傅里叶变换衰减全反射红外光谱仪(ATR-FTIR),它主要由两部分构成:傅里叶红外光谱仪(光源、干涉仪、试样插入装置、检测器、计算机和记录仪)和全反射附件(结构如图3所示)。图3 水平ATR附件的结构及光路示意图3 红外衰减全反射的特点与常规透射式FTIR 相比,ATR-FTIR 具有如下突出特点:(1)红外辐射通过穿透样品与样品发生相互作用而产生吸收,因此ATR 谱具有透射吸收谱的特性和形状,因谱图数据库中多以透射谱形式出现,ATR 谱的这一特性使它便于与透射谱比较。但由于不同波数区间ATR 技术灵敏度不同,因此ATR 谱吸收峰相对强度与透射谱相比较并不完全一致。(2)制样简单,非破坏性,能够保持样品原貌进行测定。常用透射光谱,如KBr压片法,对样品研磨或挤压可能改变样品的微观状态。(3)可以实现原位、实时、无损测量。(4)ATR 光谱法是一种表面取样技术,所获得的主要是样品表面层的光谱信息,因此尤其适合观测样品表面的变化。可将作为比较的样品放在参比光路中,待测样品置于样品光路中,调节两光路,使样品处于同样条件下,则由这种配置所给出的两红外光谱的差减结果,即差示谱,将反映出待测样品表面的各种微小变化。(5)由于ATR 方法中,红外穿透深度随几个参数变化,因此可以调整它们,由表及里来检测垂直于样品表面的剖面内不同深度处的状态。这种不破坏样品及可获得表面不同深度处信息是ATR 法的独到之处,对某些需要进行表面处理的工业产品的检测是一个有力的工具。(6)IR 辐射的电场矢量在介质界面上三个正交方向上的分量数值是不同的,它们与光线入射角和偏振方向有关。基于光的电矢量方向与振动偶极跃迁距方向相同时才能产生红外吸收的原理,利用在不同入射角或偏振方向时测量ATR 谱,根据谱带强度变化可以推测出与谱带有关的跃迁距在ATR 晶体基板上的平均取向,由相应结构关系进一步得到化学基团的平均取向。ATR-FTIR 属于红外光谱范畴,具有一般常规FTIR 的大部分特点。同样它也存在其他红外光谱的一些不足,主要表现在: 定量分析不够好,不适用于痕量组分的分析; 是一种间接分析技术,方法所用的校正模型依赖于标准方法建立的样品数据库的精确度和适用性。仪器学家们正在寻求解决这些问题的方法,如采用对相关检测器使用锁定放大器的办法提高仪器信噪比,意图降低水及一些干扰组分的近红外光谱吸收对样品信号的干扰,从而大大降低检测误差。4 红外衰减全反射的应用实例如今,红外衰减全反射不仅广泛应用于科学研究领域,另外在工业生产以及各种检测部门也有了大面积应用。接下来我们以列举实例的方式来说明该仪器在生产生活中的应用。4.1 ATR-FTIR 在定性分析中的应用朱旭菲等[2]为了建立基于衰减全反射傅里叶变换红外光谱(ATR-FTIR) 的餐饮废油掺假检测方法,以常见食用油和餐饮废油为原料,收集8个餐饮废油和25个食用油样品,制备30个掺假油样品,共63个油样进行红外光谱扫描。随机取48个油样作为校正集样品,15个油样作为验证集样品,建立餐饮废油定性分析模型,并对定性模型进行验证; 从30个掺假油样品中,随机取20个油样作为校正集样品,10个油样作为验证集样品,建立餐饮废油定量分析模型,并对定量模型进行验证。结果表明: 在红外光谱范围为1550~650cm-1条件下,采用原始光谱结合判别分析建立定性分析模型,其识别率可达100%; 采用偏最小二乘法(PLS) 建立定量分析模型,在掺假比例1%~10%时,模型预测值与实际掺假比例呈良好的线性关系,相关系数(R) 为0.9822,标准偏差(SD) 为0.47。表明基于ATR-FTIR的餐饮废油掺假检测是可行的。 图4 食用油、餐饮废油和掺假油ATR-FTIR光谱图5 定性分析模型的建立及验证4.2 ATR-FTIR在定量分析的应用研究Chen[2]对聚苯乙烯-聚二甲基硅氧烷共聚物与聚苯乙烯聚合物构成的掺合物表面进行ATR-FTIR 定量分析。在定量前对穿透深度进行ATR 谱图校正。基于比耳定律和每个组分峰面积的比率, 进行表面聚合物浓度的测定。该校正过程提高了表层测定的精确度。此法可用于组分含量均匀的混合物体系, 如均匀掺合物。图6 采用ATR-FTIR定量分析聚合物浓度F.de Lene Mirouze[3]提出了新的数学回归方法, 如偏最小二乘回归, 可实现混合物的定量分析。例如, 分析葡萄糖糖浆中葡萄糖、麦芽糖、果糖3 种主成分含量。用ATR 技术定量分析精确度能达到3%~5%。5 参考文献[1] 朱旭菲, 徐立荣, 于修烛,等. 基于衰减全反射傅里叶变换红外光谱的餐饮废油掺假检测[J]. 中国油脂, 2017, 42(12):87-90.[2] Chen Jiaxing, Gardella Joseph A. Applied Spectroscopy , 1998 , 52(3): 361.[3] F. deLene Mirouze, Boulou J C , Dupuy N et al. Applied Spectroscopy , 1993 , 47(8):1187.了解科研前沿,获取科研干货,公众号查询“科学10分钟”/“测试GO”,测试认准测试狗~发布于 2022-11-02 11:44红外光谱傅里叶变换(Fourier Transform)全反射赞同 382 条评论分享喜欢收藏申请
讲下ATR指标的精髓,结合那些指标用最好? - 知乎
讲下ATR指标的精髓,结合那些指标用最好? - 知乎首页知乎知学堂发现等你来答切换模式登录/注册股票指标期货技术分析讲下ATR指标的精髓,结合那些指标用最好?关注者17被浏览27,896关注问题写回答邀请回答好问题添加评论分享14 个回答默认排序天启大烁哥 关注ATR指标的核心用法:一次交易应该开多少手的仓位?3.1 万播放 · 73 赞同编辑于 2021-08-13 09:55· 1.4 万次播放赞同 2413 条评论分享收藏喜欢收起凌菲 关注这么用atr指标,学会之后,顶和底清晰可见!1610 播放 · 2 赞同这么用atr指标,学会之后,顶和底清晰可见!编辑于 2022-01-05 15:21· 290 次播放赞同添加评论分享收藏喜欢
ATR: an essential regulator of genome integrity | Nature Reviews Molecular Cell Biology
ATR: an essential regulator of genome integrity | Nature Reviews Molecular Cell Biology
Skip to main content
Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
and JavaScript.
Advertisement
View all journals
Search
Log in
Explore content
About the journal
Publish with us
Subscribe
Sign up for alerts
RSS feed
nature
nature reviews molecular cell biology
review articles
article
Review Article
Published: 02 July 2008
ATR: an essential regulator of genome integrity
Karlene A. Cimprich1 & David Cortez2
Nature Reviews Molecular Cell Biology
volume 9, pages 616–627 (2008)Cite this article
15k Accesses
1312 Citations
23 Altmetric
Metrics details
Key Points
Ataxia-telangiectasia mutated (ATM) and RAD3-related (ATR) is a member of the phosphoinositide 3-kinase (PI3K)-related family of protein kinases, which includes ATM, that regulates DNA-damage responses to maintain genome integrity.
A common DNA structure — single-stranded DNA (ssDNA) with a 5′ double-stranded primer junction — is responsible in most instances for ATR activation.
ATR binds to a protein cofactor, ATR-interacting protein (ATRIP), that regulates ATR localization and activation.
Topoisomerase-binding protein-1 (TOPBP1) directly activates ATR–ATRIP complexes. Its recruitment to DNA lesions is promoted by the 9-1-1 checkpoint clamp.
ATR signals to regulate DNA replication, cell-cycle transitions and DNA repair through the phosphorylation of hundreds of substrates, including checkpoint kinase-1 (CHK1) and the minichromosome maintenance (MCM) helicase complex.
ATM and ATR have overlapping but non-redundant functions in the DNA-damage response. Crosstalk between these pathways often occurs as a consequence of interconversion of the activating DNA lesions.
ATR is essential for the survival of most replicating cells, perhaps because of the ubiquitous presence of DNA lesions and replication stress.
AbstractGenome maintenance is a constant concern for cells, and a coordinated response to DNA damage is required to maintain cellular viability and prevent disease. The ataxia-telangiectasia mutated (ATM) and ATM and RAD3-related (ATR) protein kinases act as master regulators of the DNA-damage response by signalling to control cell-cycle transitions, DNA replication, DNA repair and apoptosis. Recent studies have provided new insights into the mechanisms that control ATR activation, have helped to explain the overlapping but non-redundant activities of ATR and ATM in DNA-damage signalling, and have clarified the crucial functions of ATR in maintaining genome integrity.
Access through your institution
Buy or subscribe
This is a preview of subscription content, access via your institution
Access options
Access through your institution
Access through your institution
Change institution
Buy or subscribe
Subscribe to this journalReceive 12 print issues and online access176,64 € per yearonly 14,72 € per issueLearn moreRent or buy this articlePrices vary by article typefrom$1.95to$39.95Learn morePrices may be subject to local taxes which are calculated during checkout
Additional access options:
Log in
Learn about institutional subscriptions
Read our FAQs
Contact customer support
Figure 1: Simple models for ATR and ATM activation.Figure 2: A common DNA structure activates ATR.Figure 3: ATR phosphorylates numerous substrates to regulate replication and cell-cycle transitions.Figure 4: Interconversion of ATR- and ATM-activating DNA lesions.
ReferencesCortez, D., Guntuku, S., Qin, J. & Elledge, S. J. ATR and ATRIP: partners in checkpoint signaling. Science 294, 1713–1716 (2001). Reported the identification of ATRIP and, along with reference 129, demonstrated that ATR is essential for cell viability.Article
CAS
PubMed
Google Scholar
Brown, E. J. & Baltimore, D. ATR disruption leads to chromosomal fragmentation and early embryonic lethality. Genes Dev. 14, 397–402 (2000).Article
CAS
PubMed
PubMed Central
Google Scholar
de Klein, A. et al. Targeted disruption of the cell-cycle checkpoint gene ATR leads to early embryonic lethality in mice. Curr. Biol. 10, 479–482 (2000). Reported, together with reference 2, that disruption of ATR in mice causes early embryonic lethality.Article
CAS
PubMed
Google Scholar
Nyberg, K. A., Michelson, R. J., Putnam, C. W. & Weinert, T. A. Toward maintaining the genome: DNA damage and replication checkpoints. Annu. Rev. Genet. 36, 617–656 (2002).Article
CAS
PubMed
Google Scholar
Shechter, D., Costanzo, V. & Gautier, J. Regulation of DNA replication by ATR: signaling in response to DNA intermediates. DNA Repair (Amst.) 3, 901–908 (2004).Article
CAS
Google Scholar
Swift, M., Reitnauer, P. J., Morrell, D. & Chase, C. L. Breast and other cancers in families with ataxia-telangiectasia. N. Engl. J. Med. 316, 1289–1294 (1987).Article
CAS
PubMed
Google Scholar
Renwick, A. et al. ATM mutations that cause ataxia-telangiectasia are breast cancer susceptibility alleles. Nature Genet. 38, 873–875 (2006).Article
CAS
PubMed
Google Scholar
Savitsky, K. et al. A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science 268, 1749–1753 (1995).Article
CAS
PubMed
Google Scholar
O'Driscoll, M., Ruiz-Perez, V. L., Woods, C. G., Jeggo, P. A. & Goodship, J. A. A splicing mutation affecting expression of ataxia-telangiectasia and Rad3-related protein (ATR) results in Seckel syndrome. Nature Genet. 33, 497–501 (2003).Article
CAS
PubMed
Google Scholar
Collins, I. & Garrett, M. D. Targeting the cell division cycle in cancer: CDK and cell cycle checkpoint kinase inhibitors. Curr. Opin. Pharmacol. 5, 366–373 (2005).Article
CAS
PubMed
Google Scholar
Kaelin, W. G. Jr. The concept of synthetic lethality in the context of anticancer therapy. Nature Rev. Cancer 5, 689–698 (2005).Article
CAS
Google Scholar
Costanzo, V. et al. An ATR- and Cdc7-dependent DNA damage checkpoint that inhibits initiation of DNA replication. Mol. Cell 11, 203–213 (2003).Article
CAS
PubMed
Google Scholar
Zou, L. & Elledge, S. J. Sensing DNA damage through ATRIP recognition of RPA–ssDNA complexes. Science 300, 1542–1548 (2003). Demonstrated that ATRIP promotes ATR binding to RPA–ssDNA.Article
CAS
PubMed
Google Scholar
Fanning, E., Klimovich, V. & Nager, A. R. A dynamic model for replication protein A (RPA) function in DNA processing pathways. Nucleic Acids Res. 34, 4126–4137 (2006).Article
CAS
PubMed
PubMed Central
Google Scholar
Umezu, K., Sugawara, N., Chen, C., Haber, J. E. & Kolodner, R. D. Genetic analysis of yeast RPA1 reveals its multiple functions in DNA metabolism. Genetics 148, 989–1005 (1998).Article
CAS
PubMed
PubMed Central
Google Scholar
Lee, S. E. et al. Saccharomyces Ku70, Mre11/Rad50 and RPA proteins regulate adaptation to G2/M arrest after DNA damage. Cell 94, 399–409 (1998).Article
CAS
PubMed
Google Scholar
Jiang, G. & Sancar, A. Recruitment of DNA damage checkpoint proteins to damage in transcribed and nontranscribed sequences. Mol. Cell. Biol. 26, 39–49 (2006).Article
CAS
PubMed
PubMed Central
Google Scholar
Hermand, D. & Nurse, P. Cdc18 enforces long-term maintenance of the S phase checkpoint by anchoring the Rad3–Rad26 complex to chromatin. Mol. Cell 26, 553–563 (2007).Article
CAS
PubMed
Google Scholar
Yoshioka, K., Yoshioka, Y. & Hsieh, P. ATR kinase activation mediated by MutSα and MutLα in response to cytotoxic O6-methylguanine adducts. Mol. Cell 22, 501–510 (2006).Article
CAS
PubMed
PubMed Central
Google Scholar
Ball, H. L. et al. Function of a conserved checkpoint recruitment domain in ATRIP proteins. Mol. Cell. Biol. 27, 3367–3377 (2007).Article
CAS
PubMed
PubMed Central
Google Scholar
Stokes, M. P., Van Hatten, R., Lindsay, H. D. & Michael, W. M. DNA replication is required for the checkpoint response to damaged DNA in Xenopus egg extracts. J. Cell Biol. 158, 863–872 (2002).Article
CAS
PubMed
PubMed Central
Google Scholar
Michael, W. M., Ott, R., Fanning, E. & Newport, J. Activation of the DNA replication checkpoint through RNA synthesis by primase. Science 289, 2133–2137 (2000).Article
CAS
PubMed
Google Scholar
Byun, T. S., Pacek, M., Yee, M. C., Walter, J. C. & Cimprich, K. A. Functional uncoupling of MCM helicase and DNA polymerase activities activates the ATR-dependent checkpoint. Genes Dev. 19, 1040–1052 (2005). Demonstrated that checkpoint activation in X. laevis egg extracts, by agents that stall DNA-replication forks, requires the uncoupling of helicase and polymerase activities to generate long stretches of ssDNA.Article
CAS
PubMed
PubMed Central
Google Scholar
MacDougall, C. A., Byun, T. S., Van, C., Yee, M. C. & Cimprich, K. A. The structural determinants of checkpoint activation. Genes Dev. 21, 898–903 (2007). Used defined DNA structures in X. laevis egg extracts to show that ssDNA and a 5′ junction are sufficient to activate ATR signalling.Article
CAS
PubMed
PubMed Central
Google Scholar
Parrilla-Castellar, E. R., Arlander, S. J. & Karnitz, L. Dial 9-1-1 for DNA damage: the Rad9–Hus1–Rad1 (9-1-1) clamp complex. DNA Repair (Amst.) 3, 1009–1014 (2004).Article
CAS
Google Scholar
Ellison, V. & Stillman, B. Biochemical characterization of DNA damage checkpoint complexes: clamp loader and clamp complexes with specificity for 5′ recessed DNA. PLoS Biol. 1, E33 (2003).Article
PubMed
PubMed Central
CAS
Google Scholar
Zou, L., Liu, D. & Elledge, S. J. Replication protein A-mediated recruitment and activation of Rad17 complexes. Proc. Natl Acad. Sci. USA 100, 13827–13832 (2003).Article
CAS
PubMed
PubMed Central
Google Scholar
Bermudez, V. P. et al. Loading of the human 9-1-1 checkpoint complex onto DNA by the checkpoint clamp loader hRad17-replication factor C complex in vitro. Proc. Natl Acad. Sci. USA 100, 1633–1638 (2003).Article
CAS
PubMed
PubMed Central
Google Scholar
Majka, J., Binz, S. K., Wold, M. S. & Burgers, P. M. Replication protein A directs loading of the DNA damage checkpoint clamp to 5′-DNA junctions. J. Biol. Chem. 281, 27855–27861 (2006).Article
CAS
PubMed
Google Scholar
Kanoh, Y., Tamai, K. & Shirahige, K. Different requirements for the association of ATR–ATRIP and 9-1-1 to the stalled replication forks. Gene 377, 88–95 (2006).Article
CAS
PubMed
Google Scholar
Pacek, M. & Walter, J. C. A requirement for MCM7 and Cdc45 in chromosome unwinding during eukaryotic DNA replication. EMBO J. 23, 3667–3676 (2004).Article
CAS
PubMed
PubMed Central
Google Scholar
Nedelcheva, M. N. et al. Uncoupling of unwinding from DNA synthesis implies regulation of MCM helicase by Tof1/Mrc1/Csm3 checkpoint complex. J. Mol. Biol. 347, 509–521 (2005).Article
CAS
PubMed
Google Scholar
Majka, J., Niedziela-Majka, A. & Burgers, P. M. The checkpoint clamp activates Mec1 kinase during initiation of the DNA damage checkpoint. Mol. Cell 24, 891–901 (2006).Article
CAS
PubMed
PubMed Central
Google Scholar
Lee, J., Kumagai, A. & Dunphy, W. G. The Rad9–Hus1–Rad1 checkpoint clamp regulates interaction of TopBP1 with ATR. J. Biol. Chem. 282, 28036–28044 (2007).Article
CAS
PubMed
Google Scholar
Delacroix, S., Wagner, J. M., Kobayashi, M., Yamamoto, K. & Karnitz, L. M. The Rad9–Hus1–Rad1 (9-1-1) clamp activates checkpoint signaling via TopBP1. Genes Dev. 21, 1472–1477 (2007).Article
CAS
PubMed
PubMed Central
Google Scholar
Furuya, K., Poitelea, M., Guo, L., Caspari, T. & Carr, A. M. Chk1 activation requires Rad9 S/TQ-site phosphorylation to promote association with C-terminal BRCT domains of Rad4TOPBP1. Genes Dev. 18, 1154–1164 (2004).Article
CAS
PubMed
PubMed Central
Google Scholar
Kumagai, A., Lee, J., Yoo, H. Y. & Dunphy, W. G. TopBP1 activates the ATR–ATRIP complex. Cell 124, 943–955 (2006). Demonstrated that TOPBP1 is a protein activator of ATR kinase activity.Article
CAS
PubMed
Google Scholar
St Onge, R. P., Besley, B. D., Pelley, J. L. & Davey, S. A role for the phosphorylation of hRad9 in checkpoint signaling. J. Biol. Chem. 278, 26620–26628 (2003).Article
CAS
PubMed
Google Scholar
Weiss, R. S., Enoch, T. & Leder, P. Inactivation of mouse Hus1 results in genomic instability and impaired responses to genotoxic stress. Genes Dev. 14, 1886–1898 (2000).Article
CAS
PubMed
PubMed Central
Google Scholar
Hopkins, K. M. et al. Deletion of mouse rad9 causes abnormal cellular responses to DNA damage, genomic instability, and embryonic lethality. Mol. Cell. Biol. 24, 7235–7248 (2004).Article
CAS
PubMed
PubMed Central
Google Scholar
Mordes, D. A., Glick, G. G., Zhao, R. & Cortez, D. TopBP1 activates ATR through ATRIP and a PIKK regulatory domain. Genes Dev. 22, 1478–1489 (2008). Defined binding surfaces on ATR and ATRIP for TOPBP1, and identified a common regulatory domain among PIKK family members that provides specialized regulatory opportunities for these kinases.Article
CAS
PubMed
PubMed Central
Google Scholar
Sekulic, A. et al. A direct linkage between the phosphoinositide 3-kinase–AKT signaling pathway and the mammalian target of rapamycin in mitogen-stimulated and transformed cells. Cancer Res. 60, 3504–3513 (2000).CAS
PubMed
Google Scholar
Sun, Y., Xu, Y., Roy., K. & Price, B. D. DNA damage induced acetylation of lysine 3016 of ATM activates ATM kinase activity. Mol. Cell. Biol. 24, 8502–8509 (2007).Article
CAS
Google Scholar
Stucki, M. & Jackson, S. P. γH2AX and MDC1: anchoring the DNA-damage-response machinery to broken chromosomes. DNA Repair (Amst.) 5, 534–543 (2006).Article
CAS
Google Scholar
Soutoglou, E. & Misteli, T. Activation of the cellular DNA damage response in the absence of DNA lesions. Science 320, 1507–1510 (2008).Article
CAS
PubMed
PubMed Central
Google Scholar
Bonilla, C. Y., Melo, J. A. & Toczyski, D. P. Colocalization of sensors is sufficient to activate the DNA damage checkpoint in the absence of damage. Mol. Cell 30, 267–276 (2008).Article
CAS
PubMed
PubMed Central
Google Scholar
Toledo, L. I., Murga, M., Gutierrez-Martinez, P., Soria, R. & Fernandez-Capetillo, O. ATR signaling can drive cells into senescence in the absence of DNA breaks. Genes Dev. 22, 297–302 (2008).Article
CAS
PubMed
PubMed Central
Google Scholar
Choi, J. H., Lindsey-Boltz, L. A. & Sancar, A. Reconstitution of a human ATR-mediated checkpoint response to damaged DNA. Proc. Natl Acad. Sci. USA 104, 13301–13306 (2007).Article
CAS
PubMed
PubMed Central
Google Scholar
Kondo, T., Wakayama, T., Naiki, T., Matsumoto, K. & Sugimoto, K. Recruitment of Mec1 and Ddc1 checkpoint proteins to double-strand breaks through distinct mechanisms. Science 294, 867–870 (2001).Article
CAS
PubMed
Google Scholar
Melo, J. A., Cohen, J. & Toczyski, D. P. Two checkpoint complexes are independently recruited to sites of DNA damage in vivo. Genes Dev. 15, 2809–2821 (2001). References 49 and 50 provided the first evidence that the checkpoint clamp and the ATR kinase are recruited to sites of DNA lesions independently.Article
CAS
PubMed
PubMed Central
Google Scholar
Zou, L., Cortez, D. & Elledge, S. J. Regulation of ATR substrate selection by Rad17-dependent loading of Rad9 complexes onto chromatin. Genes Dev. 16, 198–208 (2002).Article
CAS
PubMed
PubMed Central
Google Scholar
You, Z., Kong, L. & Newport, J. The role of single-stranded DNA and polymerase α in establishing the ATR, Hus1 DNA replication checkpoint. J. Biol. Chem. 277, 27088–27093 (2002).Article
CAS
PubMed
Google Scholar
Lee, J., Kumagai, A. & Dunphy, W. G. Claspin, a Chk1-regulatory protein, monitors DNA replication on chromatin independently of RPA, ATR, and Rad17. Mol. Cell 11, 329–340 (2003).Article
CAS
PubMed
Google Scholar
Ball, H. L., Myers, J. S. & Cortez, D. ATRIP binding to RPA–ssDNA promotes ATR–ATRIP localization but is dispensable for Chk1 phosphorylation. Mol. Biol. Cell 16, 2372–2381 (2005).Article
CAS
PubMed
PubMed Central
Google Scholar
Bakkenist, C. J. & Kastan, M. B. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421, 499–506 (2003).Article
CAS
PubMed
Google Scholar
Ball, H. L. & Cortez, D. ATRIP oligomerization is required for ATR-dependent checkpoint signaling. J. Biol. Chem. 280, 31390–31396 (2005).Article
CAS
PubMed
Google Scholar
Itakura, E., Sawada, I. & Matsuura, A. Dimerization of the ATRIP protein through the coiled-coil motif and its implication to the maintenance of stalled replication forks. Mol. Biol. Cell 16, 5551–5562 (2005).Article
CAS
PubMed
PubMed Central
Google Scholar
Lee, S. J., Duong, J. K. & Stern, D. F. A Ddc2–Rad53 fusion protein can bypass the requirements for RAD9 and MRC1 in Rad53 activation. Mol. Biol. Cell 15, 5443–5455 (2004).Article
CAS
PubMed
PubMed Central
Google Scholar
Kim, S. M., Kumagai, A., Lee, J. & Dunphy, W. G. Phosphorylation of Chk1 by ATM- and Rad3-related (ATR) in Xenopus egg extracts requires binding of ATRIP to ATR but not the stable DNA-binding or coiled-coil domains of ATRIP. J. Biol. Chem. 280, 38355–38364 (2005).Article
CAS
PubMed
Google Scholar
Bentley, N. J. et al. The Schizosaccharomyces pombe rad3 checkpoint gene. EMBO J. 15, 6641–6651 (1996).Article
CAS
PubMed
PubMed Central
Google Scholar
Lindsay, H. D. et al. S-phase-specific activation of Cds1 kinase defines a subpathway of the checkpoint response in Schizosaccharomyces pombe. Genes Dev. 12, 382–395 (1998).Article
CAS
PubMed
PubMed Central
Google Scholar
Paciotti, V., Clerici, M., Scotti, M., Lucchini, G. & Longhese, M. P. Characterization of mec1 kinase-deficient mutants and of new hypomorphic mec1 alleles impairing subsets of the DNA damage response pathway. Mol. Cell. Biol. 21, 3913–3925 (2001).Article
CAS
PubMed
PubMed Central
Google Scholar
Canman, C. E. et al. Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science 281, 1677–1679 (1998).Article
CAS
PubMed
Google Scholar
Banin, S. et al. Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science 281, 1674–1677 (1998).Article
CAS
PubMed
Google Scholar
Kumagai, A., Kim, S. M. & Dunphy, W. G. Claspin and the activated form of ATR–ATRIP collaborate in the activation of Chk1. J. Biol. Chem. (2004).Yoo, H. Y., Kumagai, A., Shevchenko, A., Shevchenko, A. & Dunphy, W. G. Ataxia-telangiectasia mutated (ATM)-dependent activation of ATR occurs through phosphorylation of TopBP1 by ATM. J. Biol. Chem. 282, 17501–17506 (2007).Article
CAS
PubMed
Google Scholar
Buchmann, A. M., Skaar, J. R. & DeCaprio, J. A. Activation of a DNA damage checkpoint response in a TAF1-defective cell line. Mol. Cell. Biol. 24, 5332–5339 (2004).Article
CAS
PubMed
PubMed Central
Google Scholar
Derheimer, F. A. et al. RPA and ATR link transcriptional stress to p53. Proc. Natl Acad. Sci. USA 104, 12778–12783 (2007).Article
CAS
PubMed
PubMed Central
Google Scholar
Yamane, K., Wu, X. & Chen, J. A DNA damage-regulated BRCT-containing protein, TopBP1, is required for cell survival. Mol. Cell. Biol. 22, 555–566 (2002).Article
CAS
PubMed
PubMed Central
Google Scholar
Yan, S., Lindsay, H. D. & Michael, W. M. Direct requirement for Xmus101 in ATR-mediated phosphorylation of Claspin bound Chk1 during checkpoint signaling. J. Cell Biol. 173, 181–186 (2006).Article
CAS
PubMed
PubMed Central
Google Scholar
Lupardus, P. J. & Cimprich, K. A. Phosphorylation of Xenopus Rad1 and Hus1 defines a readout for ATR activation that is independent of Claspin and the Rad9 carboxy terminus. Mol. Biol. Cell 17, 1559–1569 (2006).Article
CAS
PubMed
PubMed Central
Google Scholar
Namiki, Y. & Zou, L. ATRIP associates with replication protein A-coated ssDNA through multiple interactions. Proc. Natl Acad. Sci. USA 103, 580–585 (2006).Article
CAS
PubMed
PubMed Central
Google Scholar
Sivasubramaniam, S., Sun, X., Pan, Y. R., Wang, S. & Lee, E. Y. Cep164 is a mediator protein required for the maintenance of genomic stability through modulation of MDC1, RPA, and CHK1. Genes Dev. 22, 587–600 (2008).Article
CAS
PubMed
PubMed Central
Google Scholar
Unsal-Kacmaz, K., Makhov, A. M., Griffith, J. D. & Sancar, A. Preferential binding of ATR protein to UV-damaged DNA. Proc. Natl Acad. Sci. USA 99, 6673–6678 (2002).Article
CAS
PubMed
PubMed Central
Google Scholar
Roche, K. C., Rocha, S., Bracken, C. P. & Perkins, N. D. Regulation of ATR-dependent pathways by the FHA domain containing protein SNIP1. Oncogene 26, 4523–4530 (2007).Article
CAS
PubMed
Google Scholar
Park, B. J. et al. The haploinsufficient tumor suppressor p18 upregulates p53 via interactions with ATM/ATR. Cell 120, 209–221 (2005).Article
CAS
PubMed
Google Scholar
Zhang, J. et al. Protein phosphatase 5 is required for ATR-mediated checkpoint activation. Mol. Cell. Biol. 25, 9910–9919 (2005).Article
CAS
PubMed
PubMed Central
Google Scholar
Zachos, G., Rainey, M. D. & Gillespie, D. A. Chk1-dependent S–M checkpoint delay in vertebrate cells is linked to maintenance of viable replication structures. Mol. Cell. Biol. 25, 563–574 (2005).Article
CAS
PubMed
PubMed Central
Google Scholar
Matsuoka, S. et al. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316, 1160–1166 (2007).Article
CAS
PubMed
Google Scholar
Mu, J. J. et al. A proteomic analysis of ataxia telangiectasia-mutated (ATM)/ATM-Rad3-related (ATR) substrates identifies the ubiquitin-proteasome system as a regulator for DNA damage checkpoints. J. Biol. Chem. 282, 17330–17334 (2007).Article
CAS
PubMed
Google Scholar
Stokes, M. P. et al. Profiling of UV-induced ATM/ATR signaling pathways. Proc. Natl Acad. Sci. USA 104, 19855–19860 (2007).Article
CAS
PubMed
PubMed Central
Google Scholar
Smolka, M. B., Albuquerque, C. P., Chen, S. H. & Zhou, H. Proteome-wide identification of in vivo targets of DNA damage checkpoint kinases. Proc. Natl Acad. Sci. USA 104, 10364–10369 (2007).Article
CAS
PubMed
PubMed Central
Google Scholar
Walworth, N. C. & Bernards, R. rad-dependent response of the chk1-encoded protein kinase at the DNA damage checkpoint. Science 271, 353–356 (1996).Article
CAS
PubMed
Google Scholar
Liu, Q. et al. Chk1 is an essential kinase that is regulated by Atr and required for the G2/M DNA damage checkpoint. Genes Dev. 14, 1448–1459 (2000).Article
CAS
PubMed
PubMed Central
Google Scholar
Lopez-Girona, A. et al. Serine-345 is required for Rad3-dependent phosphorylation and function of checkpoint kinase Chk1 in fission yeast. Proc. Natl Acad. Sci. USA 98, 11289–11294 (2001).Article
CAS
PubMed
PubMed Central
Google Scholar
Kumagai, A. & Dunphy, W. G. Claspin, a novel protein required for the activation of Chk1 during a DNA replication checkpoint response in Xenopus egg extracts. Mol. Cell 6, 839–849 (2000).Article
CAS
PubMed
Google Scholar
Kumagai, A. & Dunphy, W. G. Repeated phosphopeptide motifs in Claspin mediate the regulated binding of Chk1. Nature Cell Biol. 5, 161–165 (2003).Article
CAS
PubMed
Google Scholar
Liu, S. et al. Claspin operates downstream of TopBP1 to direct ATR signaling towards Chk1 activation. Mol. Cell. Biol. 26, 6056–6064 (2006).Article
CAS
PubMed
PubMed Central
Google Scholar
Wang, X. et al. Rad17 phosphorylation is required for claspin recruitment and Chk1 activation in response to replication stress. Mol. Cell 23, 331–341 (2006).Article
PubMed
CAS
Google Scholar
Bao, S. et al. ATR/ATM-mediated phosphorylation of human Rad17 is required for genotoxic stress responses. Nature 411, 969–974 (2001).Article
CAS
PubMed
Google Scholar
Unsal-Kacmaz, K. et al. The human Tim/Tipin complex coordinates an Intra-S checkpoint response to UV that slows replication fork displacement. Mol. Cell. Biol. 27, 3131–3142 (2007).Article
CAS
PubMed
PubMed Central
Google Scholar
Errico, A., Costanzo, V. & Hunt, T. Tipin is required for stalled replication forks to resume DNA replication after removal of aphidicolin in Xenopus egg extracts. Proc. Natl Acad. Sci. USA 104, 14929–14934 (2007).Article
CAS
PubMed
PubMed Central
Google Scholar
Smits, V. A., Reaper, P. M. & Jackson, S. P. Rapid PIKK-dependent release of Chk1 from chromatin promotes the DNA-damage checkpoint response. Curr. Biol. 16, 150–159 (2006).Article
CAS
PubMed
Google Scholar
Boutros, R., Dozier, C. & Ducommun, B. The when and wheres of CDC25 phosphatases. Curr. Opin. Cell Biol. 18, 185–191 (2006).Article
CAS
PubMed
Google Scholar
Furnari, B., Rhind, N. & Russell, P. Cdc25 mitotic inducer targeted by chk1 DNA damage checkpoint kinase. Science 277, 1495–1497 (1997).Article
CAS
PubMed
Google Scholar
Peng, C. Y. et al. Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216. Science 277, 1501–1505 (1997).Article
CAS
PubMed
Google Scholar
Sanchez, Y. et al. Conservation of the Chk1 checkpoint pathway in mammals: linkage of DNA damage to Cdk regulation through Cdc25. Science 277, 1497–1501 (1997).Article
CAS
PubMed
Google Scholar
Shechter, D., Costanzo, V. & Gautier, J. ATR and ATM regulate the timing of DNA replication origin firing. Nature Cell Biol. 6, 648–655 (2004).Article
CAS
PubMed
Google Scholar
Maya-Mendoza, A., Petermann, E., Gillespie, D. A., Caldecott, K. W. & Jackson, D. A. Chk1 regulates the density of active replication origins during the vertebrate S phase. EMBO J. 26, 2719–2731 (2007).Article
CAS
PubMed
PubMed Central
Google Scholar
Shirahige, K. et al. Regulation of DNA-replication origins during cell-cycle progression. Nature 395, 618–621 (1998).Article
CAS
PubMed
Google Scholar
Tercero, J. A. & Diffley, J. F. Regulation of DNA replication fork progression through damaged DNA by the Mec1/Rad53 checkpoint. Nature 412, 553–557 (2001). Used the S. cerevisiae system to show that the ATR checkpoint pathway regulates both fork stability and origin firing.Article
CAS
PubMed
Google Scholar
Merrick, C. J., Jackson, D. & Diffley, J. F. Visualization of altered replication dynamics after DNA damage in human cells. J. Biol. Chem. 279, 20067–20075 (2004).Article
CAS
PubMed
Google Scholar
Dimitrova, D. S. & Gilbert, D. M. Temporally coordinated assembly and disassembly of replication factories in the absence of DNA synthesis. Nature Cell Biol. 2, 686–694 (2000).Article
CAS
PubMed
Google Scholar
Feijoo, C. et al. Activation of mammalian Chk1 during DNA replication arrest: a role for Chk1 in the intra-S phase checkpoint monitoring replication origin firing. J. Cell Biol. 154, 913–923 (2001).Article
CAS
PubMed
PubMed Central
Google Scholar
Alvino, G. M. et al. Replication in hydroxyurea: it's a matter of time. Mol. Cell. Biol. 27, 6396–6406 (2007).Article
CAS
PubMed
PubMed Central
Google Scholar
Heffernan, T. P. et al. An ATR- and Chk1-dependent S checkpoint inhibits replicon initiation following UVC-induced DNA damage. Mol. Cell. Biol. 22, 8552–8561 (2002).Article
CAS
PubMed
PubMed Central
Google Scholar
Mickle, K. L. et al. Checkpoint independence of most DNA replication origins in fission yeast. BMC Mol. Biol. 8, 112 (2007).Article
PubMed
PubMed Central
CAS
Google Scholar
Trenz, K., Smith, E., Smith, S. & Costanzo, V. ATM and ATR promote Mre11 dependent restart of collapsed replication forks and prevent accumulation of DNA breaks. EMBO J. 25, 1764–1774 (2006).Article
CAS
PubMed
PubMed Central
Google Scholar
Brush, G. S., Morrow, D. M., Hieter, P. & Kelly, T. J. The ATM homologue MEC1 is required for phosphorylation of replication protein A in yeast. Proc. Natl Acad. Sci. USA 93, 15075–15080 (1996).Article
CAS
PubMed
PubMed Central
Google Scholar
Wang, H., Guan, J., Perrault, A. R., Wang, Y. & Iliakis, G. Replication protein A2 phosphorylation after DNA damage by the coordinated action of ataxia telangiectasia-mutated and DNA-dependent protein kinase. Cancer Res. 61, 8554–8563 (2001).CAS
PubMed
Google Scholar
Cortez, D., Glick, G. & Elledge, S. J. Minichromosome maintenance proteins are direct targets of the ATM and ATR checkpoint kinases. Proc. Natl Acad. Sci. USA 101, 10078–10083 (2004).Article
CAS
PubMed
PubMed Central
Google Scholar
Yoo, H. Y., Shevchenko, A. & Dunphy, W. G. Mcm2 is a direct substrate of ATM and ATR during DNA damage and DNA replication checkpoint responses. J. Biol. Chem. 279, 53353–53364 (2004).Article
CAS
PubMed
Google Scholar
Liu, J. S., Kuo, S. R. & Melendy, T. Phosphorylation of replication protein A by S-phase checkpoint kinases. DNA Repair (Amst.) 5, 369–380 (2006).Article
CAS
Google Scholar
Oakley, G. G. et al. UV-induced hyperphosphorylation of replication protein A depends on DNA replication and expression of ATM protein. Mol. Biol. Cell 12, 1199–1213 (2001).Article
CAS
PubMed
PubMed Central
Google Scholar
Trenz, K., Errico, A. & Costanzo, V. Plx1 is required for chromosomal DNA replication under stressful conditions. EMBO J. 27, 876–885 (2008). Determined that the ATR-dependent phosphorylation of MCM2 (previously identified in references 111 and 112) recruits the Polo-like kinase to stalled replication forks to promote completion of DNA synthesis.Article
CAS
PubMed
PubMed Central
Google Scholar
Ge, X. Q., Jackson, D. A. & Blow, J. J. Dormant origins licensed by excess Mcm2–7 are required for human cells to survive replicative stress. Genes Dev. 21, 3331–3341 (2007). Determined that excess MCM complex promotes the firing of additional origins of replication when replication is stalled.Article
CAS
PubMed
PubMed Central
Google Scholar
Woodward, A. M. et al. Excess Mcm2–7 license dormant origins of replication that can be used under conditions of replicative stress. J. Cell Biol. 173, 673–683 (2006).Article
CAS
PubMed
PubMed Central
Google Scholar
Tibbetts, R. S. et al. Functional interactions between BRCA1 and the checkpoint kinase ATR during genotoxic stress. Genes Dev. 14, 2989–3002 (2000).Article
CAS
PubMed
PubMed Central
Google Scholar
Pichierri, P., Rosselli, F. & Franchitto, A. Werner's syndrome protein is phosphorylated in an ATR/ATM-dependent manner following replication arrest and DNA damage induced during the S phase of the cell cycle. Oncogene 22, 1491–1500 (2003).Article
CAS
PubMed
Google Scholar
Davies, S. L., North, P. S., Dart, A., Lakin, N. D. & Hickson, I. D. Phosphorylation of the Bloom's syndrome helicase and its role in recovery from S-phase arrest. Mol. Cell. Biol. 24, 1279–1291 (2004).Article
CAS
PubMed
PubMed Central
Google Scholar
Li, W., Kim, S. M., Lee, J. & Dunphy, W. G. Absence of BLM leads to accumulation of chromosomal DNA breaks during both unperturbed and disrupted S phases. J. Cell Biol. 165, 801–812 (2004).Article
CAS
PubMed
PubMed Central
Google Scholar
Meister, P. et al. Temporal separation of replication and recombination requires the intra-S checkpoint. J. Cell Biol. 168, 537–544 (2005).Article
CAS
PubMed
PubMed Central
Google Scholar
Andreassen, P. R., D'Andrea, A. D. & Taniguchi, T. ATR couples FANCD2 monoubiquitination to the DNA-damage response. Genes Dev. 18, 1958–1963 (2004).Article
CAS
PubMed
PubMed Central
Google Scholar
Wu, X., Shell, S. M., Liu, Y. & Zou, Y. ATR-dependent checkpoint modulates XPA nuclear import in response to UV irradiation. Oncogene 26, 757–764 (2007).Article
CAS
PubMed
Google Scholar
Jazayeri, A. et al. ATM- and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks. Nature Cell Biol. 8, 37–45 (2006).Article
CAS
PubMed
Google Scholar
Myers, J. S. & Cortez, D. Rapid activation of ATR by ionizing radiation requires ATM and Mre11. J. Biol. Chem. 281, 9346–9350 (2006).Article
CAS
PubMed
Google Scholar
Adams, K. E., Medhurst, A. L., Dart, D. A. & Lakin, N. D. Recruitment of ATR to sites of ionising radiation-induced DNA damage requires ATM and components of the MRN protein complex. Oncogene 25, 3894–3904 (2006).Article
CAS
PubMed
PubMed Central
Google Scholar
Cuadrado, M. et al. ATM regulates ATR chromatin loading in response to DNA double-strand breaks. J. Exp. Med. 203, 297–303 (2006). References 125–128 demonstrated a function of ATM that is upstream of ATR activation owing to ATM-dependent end-resection of the DSBs.
Google Scholar
Brown, E. J. & Baltimore, D. Essential and dispensable roles of ATR in cell cycle arrest and genome maintenance. Genes Dev. 17, 615–628 (2003). Demonstrated, along with reference 1, that ATR is essential for cell viability.Article
CAS
PubMed
PubMed Central
Google Scholar
Costanzo, V. et al. Mre11 protein complex prevents double-strand break accumulation during chromosomal DNA replication. Mol. Cell 8, 137–147 (2001).Article
CAS
PubMed
Google Scholar
Mirzoeva, O. K. & Petrini, J. H. DNA replication-dependent nuclear dynamics of the Mre11 complex. Mol. Cancer Res. 1, 207–218 (2003).CAS
PubMed
Google Scholar
Xiao, Y. & Weaver, D. T. Conditional gene targeted deletion by Cre recombinase demonstrates the requirement for the double-strand break repair Mre11 protein in murine embryonic stem cells. Nucleic Acids Res. 25, 2985–2991 (1997).Article
CAS
PubMed
PubMed Central
Google Scholar
Luo, G. et al. Disruption of mRad50 causes embryonic stem cell lethality, abnormal embryonic development, and sensitivity to ionizing radiation. Proc. Natl Acad. Sci. USA 96, 7376–7381 (1999).Article
CAS
PubMed
PubMed Central
Google Scholar
Kang, J., Bronson, R. T. & Xu, Y. Targeted disruption of NBS1 reveals its roles in mouse development and DNA repair. EMBO J. 21, 1447–1455 (2002).Article
CAS
PubMed
PubMed Central
Google Scholar
Stiff, T. et al. Nbs1 is required for ATR-dependent phosphorylation events. EMBO J. 24, 199–208 (2005).Article
CAS
PubMed
Google Scholar
Olson, E., Nievera, C. J., Lee, A. Y., Chen, L. & Wu, X. The Mre11–Rad50–Nbs1 complex acts both upstream and downstream of ataxia telangiectasia mutated and Rad3-related protein (ATR) to regulate the S-phase checkpoint following UV treatment. J. Biol. Chem. 282, 22939–22952 (2007).Article
CAS
PubMed
Google Scholar
Stiff, T. et al. ATR-dependent phosphorylation and activation of ATM in response to UV treatment or replication fork stalling. EMBO J. 25, 5775–5782 (2006).Article
CAS
PubMed
PubMed Central
Google Scholar
Yajima, H., Lee, K. J. & Chen, B. P. ATR-dependent phosphorylation of DNA-dependent protein kinase catalytic subunit in response to UV-induced replication stress. Mol. Cell. Biol. 26, 7520–7528 (2006).Article
CAS
PubMed
PubMed Central
Google Scholar
Siliciano, J. D. et al. DNA damage induces phosphorylation of the amino terminus of p53. Genes Dev. 11, 3471–3481 (1997).Article
CAS
PubMed
PubMed Central
Google Scholar
Cortez, D., Wang, Y., Qin, J. & Elledge, S. J. Requirement of ATM-dependent phosphorylation of Brca1 in the DNA damage response to double-strand breaks. Science 286, 1162–1166 (1999).Article
CAS
PubMed
Google Scholar
Tibbetts, R. S. et al. A role for ATR in the DNA damage-induced phosphorylation of p53. Genes Dev. 13, 152–157 (1999).Article
CAS
PubMed
PubMed Central
Google Scholar
Gatei, M. et al. Ataxia-telangiectasia-mutated (ATM) and NBS1-dependent phosphorylation of Chk1 on Ser-317 in response to ionizing radiation. J. Biol. Chem. 278, 14806–14811 (2003).Article
CAS
PubMed
Google Scholar
Tercero, J. A., Longhese, M. P. & Diffley, J. F. A central role for DNA replication forks in checkpoint activation and response. Mol. Cell 11, 1323–1336 (2003).Article
CAS
PubMed
Google Scholar
Zhao, X., Muller, & Rothstein, R. A suppressor of two essential checkpoint genes identifies a novel protein that negatively affects dNTP pools. Mol. Cell 2, 329–340 (1998).Article
CAS
PubMed
Google Scholar
Desany, B. A., Alcasabas, A. A., Bachant, J. B. & Elledge, S. J. Recovery from DNA replicational stress is the essential function of the S-phase checkpoint pathway. Genes Dev. 12, 2956–2970 (1998).Article
CAS
PubMed
PubMed Central
Google Scholar
Lindahl, T. Instability and decay of the primary structure of DNA. Nature 362, 709–715 (1993).Article
CAS
PubMed
Google Scholar
Mirkin, E. V. & Mirkin, S. M. Replication fork stalling at natural impediments. Microbiol Mol. Biol. Rev. 71, 13–35 (2007).Article
CAS
PubMed
PubMed Central
Google Scholar
Gruber, M., Wellinger, R. E. & Sogo, J. M. Architecture of the replication fork stalled at the 3′ end of yeast ribosomal genes. Mol. Cell. Biol. 20, 5777–5787 (2000).Article
CAS
PubMed
PubMed Central
Google Scholar
Ivessa, A. S. et al. The Saccharomyces cerevisiae helicase Rrm3p facilitates replication past nonhistone protein–DNA complexes. Mol. Cell 12, 1525–1536 (2003).Article
CAS
PubMed
Google Scholar
Lenzmeier, B. A. & Freudenreich, C. H. Trinucleotide repeat instability: a hairpin curve at the crossroads of replication, recombination, and repair. Cytogenet. Genome Res. 100, 7–24 (2003).Article
CAS
PubMed
Google Scholar
Arlt, M. F., Durkin, S. G., Ragland, R. L. & Glover, T. W. Common fragile sites as targets for chromosome rearrangements. DNA Repair (Amst.) 5, 1126–1135 (2006).Article
CAS
Google Scholar
Lambert, S., Watson, A., Sheedy, D. M., Martin, B. & Carr, A. M. Gross chromosomal rearrangements and elevated recombination at an inducible site-specific replication fork barrier. Cell 121, 689–702 (2005).Article
CAS
PubMed
Google Scholar
Calzada, A., Hodgson, B., Kanemaki, M., Bueno, A. & Labib, K. Molecular anatomy and regulation of a stable replisome at a paused eukaryotic DNA replication fork. Genes Dev. 19, 1905–1919 (2005).Article
CAS
PubMed
PubMed Central
Google Scholar
Cox, M. M. et al. The importance of repairing stalled replication forks. Nature 404, 37–41 (2000).Article
CAS
PubMed
Google Scholar
Haber, J. E. DNA recombination: the replication connection. Trends Biochem. Sci. 24, 271–275 (1999).Article
CAS
PubMed
Google Scholar
Paulsen, R. D. & Cimprich, K. A. The ATR pathway: fine-tuning the fork. DNA Repair (Amst.) 6, 953–966 (2007).Article
CAS
Google Scholar
Glover, T. W., Arlt, M. F., Casper, A. M. & Durkin, S. G. Mechanisms of common fragile site instability. Hum. Mol. Genet. 14, R197–R205 (2005).Article
CAS
PubMed
Google Scholar
Casper, A. M., Nghiem, P., Arlt, M. F. & Glover, T. W. ATR regulates fragile site stability. Cell 111, 779–789 (2002).Article
CAS
PubMed
Google Scholar
Cha, R. S. & Kleckner, N. ATR homolog Mec1 promotes fork progression, thus averting breaks in replication slow zones. Science 297, 602–606 (2002).Article
CAS
PubMed
Google Scholar
Painter, R. B. & Young, B. R. Radiosensitivity in ataxia-telangiectasia: a new explanation. Proc. Natl Acad. Sci. USA 77, 7315–7317 (1980).Article
CAS
PubMed
PubMed Central
Google Scholar
Houldsworth, J. & Lavin, M. F. Effect of ionizing radiation on DNA synthesis in ataxia telangiectasia cells. Nucleic Acids Res. 8, 3709–3720 (1980).Article
CAS
PubMed
PubMed Central
Google Scholar
Fang, Y. et al. ATR functions as a gene dosage-dependent tumor suppressor on a mismatch repair-deficient background. EMBO J. 23, 3164–3174 (2004).Article
CAS
PubMed
PubMed Central
Google Scholar
Bartkova, J. et al. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434, 864–870 (2005).Article
CAS
PubMed
Google Scholar
Gorgoulis, V. G. et al. Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 434, 907–913 (2005). References 163 and 164 demonstrated that the DNA-damage response is activated in premalignant lesions as a consequence of replication stress.Article
CAS
PubMed
Google Scholar
Llorca, O., Rivera-Calzada, A., Grantham, J. & Willison, K. R. Electron microscopy and 3D reconstructions reveal that human ATM kinase uses an arm-like domain to clamp around double-stranded DNA. Oncogene 22, 3867–3874 (2003).Article
CAS
PubMed
Google Scholar
Leuther, K. K., Hammarsten, O., Kornberg, R. D. & Chu, G. Structure of DNA-dependent protein kinase: implications for its regulation by DNA. EMBO J. 18, 1114–1123 (1999).Article
CAS
PubMed
PubMed Central
Google Scholar
Rivera-Calzada, A., Maman, J. D., Spagnolo, L., Pearl, L. H. & Llorca, O. Three-dimensional structure and regulation of the DNA-dependent protein kinase catalytic subunit (DNA-PKcs). Structure 13, 243–255 (2005).Article
CAS
PubMed
Google Scholar
Chiu, C. Y., Cary, R. B., Chen, D. J., Peterson, S. R. & Stewart, P. L. Cryo-EM imaging of the catalytic subunit of the DNA-dependent protein kinase. J. Mol. Biol. 284, 1075–1081 (1998).Article
CAS
PubMed
Google Scholar
Williams, D. R., Lee, K. J., Shi, J., Chen, D. J. & Stewart, P. L. Cryo-EM structure of the DNA-dependent protein kinase catalytic subunit at subnanometer resolution reveals α helices and insight into DNA binding. Structure 16, 468–477 (2008).Article
CAS
PubMed
PubMed Central
Google Scholar
Perry, J. & Kleckner, N. The ATRs, ATMs, and TORs are giant HEAT repeat proteins. Cell 112, 151–155 (2003).Article
CAS
PubMed
Google Scholar
Jiang, X., Sun, Y., Chen, S., Roy, K. & Price, B. D. The FATC domains of PIKK proteins are functionally equivalent and participate in the Tip60-dependent activation of DNA-PKcs and ATM. J. Biol. Chem. 281, 15741–15746 (2006).Article
CAS
PubMed
Google Scholar
Chen, X., Zhao, R., Glick, G. G. & Cortez, D. Function of the ATR N-terminal domain revealed by an ATM/ATR chimera. Exp. Cell Res. 313, 1667–1674 (2007).Article
CAS
PubMed
PubMed Central
Google Scholar
You, Z., Chahwan, C., Bailis, J., Hunter, T. & Russell, P. ATM activation and its recruitment to damaged DNA require binding to the C terminus of Nbs1. Mol. Cell. Biol. 25, 5363–5379 (2005).Article
CAS
PubMed
PubMed Central
Google Scholar
Kim, D. H. et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110, 163–175 (2002).Article
CAS
PubMed
Google Scholar
Dvir, A., Peterson, S. R., Knuth, M. W., Lu, H. & Dynan, W. S. Ku autoantigen is the regulatory component of a template-associated protein kinase that phosphorylates RNA polymerase II. Proc. Natl Acad. Sci. USA 89, 11920–11924 (1992).Article
CAS
PubMed
PubMed Central
Google Scholar
Gottlieb, T. M. & Jackson, S. P. The DNA-dependent protein kinase: requirement for DNA ends and association with Ku antigen. Cell 72, 131–142 (1993).Article
CAS
PubMed
Google Scholar
Falck, J., Coates, J. & Jackson, S. P. Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage. Nature 434, 605–611 (2005).Article
CAS
PubMed
Google Scholar
Andegeko, Y. et al. Nuclear retention of ATM at sites of DNA double strand breaks. J. Biol. Chem. 276, 38224–38230 (2001).Article
CAS
PubMed
Google Scholar
Kitagawa, R., Bakkenist, C. J., McKinnon, P. J. & Kastan, M. B. Phosphorylation of SMC1 is a critical downstream event in the ATM–NBS1–BRCA1 pathway. Genes Dev. 18, 1423–1438 (2004).Article
CAS
PubMed
PubMed Central
Google Scholar
Chang, Y. F., Imam, J. S. & Wilkinson, M. F. The nonsense-mediated decay RNA surveillance pathway. Annu. Rev. Biochem. 76, 51–74 (2007).Article
CAS
PubMed
Google Scholar
Sarbassov, D. D. et al. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr. Biol. 14, 1296–1302 (2004).Article
CAS
PubMed
Google Scholar
Hara, K. et al. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 110, 177–189 (2002).Article
CAS
PubMed
Google Scholar
Lee, J. H. & Paull, T. T. ATM Activation by DNA double-strand breaks through the Mre11–Rad50–Nbs1 complex. Science 308, 551–554 (2005).Article
CAS
PubMed
Google Scholar
Kim, D. H. et al. GβL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR. Mol. Cell 11, 895–904 (2003).Article
CAS
PubMed
Google Scholar
Long, X., Lin, Y., Ortiz-Vega, S., Yonezawa, K. & Avruch, J. Rheb binds and regulates the mTOR kinase. Curr. Biol. 15, 702–713 (2005).Article
CAS
PubMed
Google Scholar
Takai, H., Wang, R. C., Takai, K. K., Yang, H. & de Lange, T. Tel2 regulates the stability of PI3K-related protein kinases. Cell 131, 1248–1259 (2007).Article
CAS
PubMed
Google Scholar
Itakura, E. et al. ATR-dependent phosphorylation of ATRIP in response to genotoxic stress. Biochem. Biophys. Res. Commun. 323, 1197–1202 (2004).Article
CAS
PubMed
Google Scholar
Myers, J. S., Zhao, R., Xu, X., Ham, A. J. & Cortez, D. Cyclin-dependent kinase 2 dependent phosphorylation of ATRIP regulates the G2–M checkpoint response to DNA damage. Cancer Res. 67, 6685–6690 (2007).Article
CAS
PubMed
PubMed Central
Google Scholar
Venere, M., Snyder, A., Zgheib, O. & Halazonetis, T. D. Phosphorylation of ATR-interacting protein on Ser239 mediates an interaction with breast-ovarian cancer susceptibility 1 and checkpoint function. Cancer Res. 67, 6100–6105 (2007).Article
CAS
PubMed
Google Scholar
Download referencesAcknowledgementsResearch in the Cimprich laboratory is supported by the National Institute of Environmental Health Sciences, the American Cancer Society and the California Breast Cancer Research Program. K.A.C. is a Leukemia and Lymphoma Scholar. The Cortez laboratory is supported by the National Cancer Institute, the Robert J. Kleberg Jr and Helen C. Kleberg Foundation and the Ingram Charitable Fund. The authors apologize for the many important references that could not be discussed owing to space limitations.Author informationAuthors and AffiliationsDepartment of Chemical and Systems Biology, Stanford University School of Medicine, Clark Center, 318 Campus Drive, W350B, Stanford, 94305-5441, California, USAKarlene A. CimprichDepartment of Biochemistry, Vanderbilt University School of Medicine, 613 Light Hall, 23rd @ Pierce Avenue, Nashville, 37232, Tennesee, USADavid CortezAuthorsKarlene A. CimprichView author publicationsYou can also search for this author in
PubMed Google ScholarDavid CortezView author publicationsYou can also search for this author in
PubMed Google ScholarRelated linksRelated linksDATABASESInterpro
BRCT
FAT
FATC
OB-fold
OMIM
ataxia-telangiectasia
Bloom syndrome
Werner syndrome
FURTHER INFORMATION
David Cortez's homepage
Karlene Cimprich's homepage
GlossaryHypomorphic mutation
A mutation that reduces, but does not completely eliminate, the function of a gene.
Seckel syndrome
A rare autosomal-recessive disorder that is characterized by microcephaly, mental retardation and growth retardation. One form is caused by mutations in the ataxia-telangiectasia mutated and RAD3-related (ATR) gene.
Replication stress
A problem during DNA replication that is caused by DNA lesions, inadequate deoxynucleotide supplies or other difficulties that interfere with replication-fork movement.
Replication protein A
(RPA). A heterotrimeric single-stranded DNA-binding protein complex with multiple activities in nucleic acid metabolism.
Clamp loader
A protein complex that binds and then assembles a protein clamp onto the DNA at a 3′ hydroxyl primer end for DNA replication or a 5′ phosphate primer end for checkpoint signalling.
End resection
The nuclease-dependent removal of base pairs at a double-strand break to leave an extended single-stranded DNA end with a recessed 5′ end.
Nucleotide-excision repair
A process in which a small region of the DNA strand that surrounds a bulky DNA lesion is removed from the DNA helix as an oligonucleotide.
BRCT domain
An evolutionarily conserved phospho-Ser/Thr-interaction motif that was identified first in the C-terminal part of breast cancer-1 (BRCA1) and subsequently in several other checkpoint mediators.
MRN complex
A double-strand-break-sensing complex that contains meiotic recombination protein-11 (MRE11), RAD50 and Nijmegen breakage syndrome protein-1 (NBS1) and that is important in the recruitment and activation of ataxia-telangiectasia mutated (ATM) kinase.
Cellular senescence
A nearly irreversible stage of permanent G1 cell-cycle arrest that is linked to morphological changes (for example, flattening of the cells), metabolic changes and changes in gene expression.
HEAT repeat
A tandemly repeated, 37–47-amino-acid module that forms an extended α-helical structure. It is named after four proteins: huntingtin, elongation factor-3 (EF3), protein phosphatase-2A (PP2A) and target of rapamycin-1 (TOR1).
Replisome
A multiprotein complex at the junction of the DNA replication fork that contains all of the enzymes that are required for DNA replication.
Nonsense-mediated mRNA decay
A pathway that eliminates mRNAs that bear premature stop codons.
Exon-junction complex
A complex of proteins that is deposited, as a consequence of pre-mRNA splicing, ∼20–24 nucleotides upstream of the splicing-generated exon–exon junctions of newly synthesized mRNA.
MCM2–7 complex
A complex of 6 minichromosome maintenance proteins (MCM2–7) that functions, together with accessory proteins, as the replicative helicase that unwinds double-stranded DNA.
Polo-like kinase
An evolutionarily conserved Ser/Thr kinase with functions in mitosis and checkpoint signalling.
Collapsed replication fork
A blocked replication fork that has lost components of the replisome.
Rights and permissionsReprints and permissionsAbout this articleCite this articleCimprich, K., Cortez, D. ATR: an essential regulator of genome integrity.
Nat Rev Mol Cell Biol 9, 616–627 (2008). https://doi.org/10.1038/nrm2450Download citationPublished: 02 July 2008Issue Date: August 2008DOI: https://doi.org/10.1038/nrm2450Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard
Provided by the Springer Nature SharedIt content-sharing initiative
This article is cited by
Targeting ATR in patients with cancer
Natalie Y. L. NgoiPatrick G. PiliéTimothy A. Yap
Nature Reviews Clinical Oncology (2024)
FLIP(C1orf112)-FIGNL1 complex regulates RAD51 chromatin association to promote viability after replication stress
Jessica D. TischlerHiroshi TsuchidaRichard O. Adeyemi
Nature Communications (2024)
Whole-genome sequencing reveals adaptations of hairy-footed jerboas (Dipus, Dipodidae) to diverse desert environments
Xingwen PengJilong ChengQisen Yang
BMC Biology (2023)
ATR-binding lncRNA ScaRNA2 promotes cancer resistance through facilitating efficient DNA end resection during homologous recombination repair
Yuanyuan ChenHui ShenYanyong Yang
Journal of Experimental & Clinical Cancer Research (2023)
Biomedical association analysis between G2/M checkpoint genes and susceptibility to HIV-1 infection and AIDS progression from a northern chinese MSM population
Jiawei WuLidan XuXuelong Zhang
AIDS Research and Therapy (2023)
Access through your institution
Buy or subscribe
Access through your institution
Change institution
Buy or subscribe
Advertisement
Explore content
Research articles
Reviews & Analysis
News & Comment
Current issue
Collections
Follow us on Facebook
Follow us on Twitter
Subscribe
Sign up for alerts
RSS feed
About the journal
Aims & Scope
Journal Information
About the Editors
Journal Credits
Editorial input and checks
Editorial Values Statement
Journal Metrics
Editorial policies
Publishing model
Posters
Web Feeds
Contact
Reviews Cross-Journal Editorial Team
Publish with us
For Authors
For Referees
Submit manuscript
Search
Search articles by subject, keyword or author
Show results from
All journals
This journal
Search
Advanced search
Quick links
Explore articles by subject
Find a job
Guide to authors
Editorial policies
Nature Reviews Molecular Cell Biology (Nat Rev Mol Cell Biol)
ISSN 1471-0080 (online)
ISSN 1471-0072 (print)
nature.com sitemap
About Nature Portfolio
About us
Press releases
Press office
Contact us
Discover content
Journals A-Z
Articles by subject
Protocol Exchange
Nature Index
Publishing policies
Nature portfolio policies
Open access
Author & Researcher services
Reprints & permissions
Research data
Language editing
Scientific editing
Nature Masterclasses
Research Solutions
Libraries & institutions
Librarian service & tools
Librarian portal
Open research
Recommend to library
Advertising & partnerships
Advertising
Partnerships & Services
Media kits
Branded
content
Professional development
Nature Careers
Nature
Conferences
Regional websites
Nature Africa
Nature China
Nature India
Nature Italy
Nature Japan
Nature Korea
Nature Middle East
Privacy
Policy
Use
of cookies
Your privacy choices/Manage cookies
Legal
notice
Accessibility
statement
Terms & Conditions
Your US state privacy rights
© 2024 Springer Nature Limited
Close banner
Close
Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.
Email address
Sign up
I agree my information will be processed in accordance with the Nature and Springer Nature Limited Privacy Policy.
Close banner
Close
Get the most important science stories of the day, free in your inbox.
Sign up for Nature Briefing
ATR重返中国:如何让支线回归支线-中国民航网
ATR重返中国:如何让支线回归支线-中国民航网
登录 | 注册
|退出
首 页
新 闻
每日头条
民航要闻
国内要闻
国际要闻
行业新闻
动态汇总
频 道
民航局
行业管理
国际民航
民航空管
航空运输
科教人才
中国机场
航空保障
快递物流
专题专栏
专 题
民航智库
航 图
一线人物
镜头民航
航旅深度游
通航频道
政 策
观 察
安 全
运 营
制 造
无人机
今日民航
机型美图
数据百科
舆情推送
舆情报告
舆情处罚
舆情安全
舆情服务
网络电视
报刊图书
《中国民航报》
《中国民航》
《SKY TIMES》
《今日民航》
《采编通讯》
民航图书
服 务
投稿信箱
航企热线
招生招聘
联系我们
QQ 在线
消费者投诉
电子客票验真
微 信
抖 音
广 告
中国民航网
《中国民航报》
《中国民航》
《今日民航》
中国民航出版社
关于我们
头条
要闻
国内
国际
行业
动态
专题区
电子版
民航智库
|
专栏 :
一线人物
镜头民航
航旅深度游
航图
频道 :
民航局
行业管理
国际民航
民航空管
航空运输
科研院校
中国机场
航空保障
快递·物流
中国民航网络电视
新闻检索
|
其他 :
航企热线
广告报价
投稿信箱
图书在线
消费者投诉
航班实时动态
友情链接
忘记密码点击注册
登 录
使用第三方账号登录
绑定手机号
获取验证码
立即绑定
立即绑定
首页>新闻汇总>国际民航
ATR重返中国:如何让支线回归支线
来源:中国民航网2019-06-03 17:36:00
ATR图卢兹总装线
距离ATR宣布在北京设立代表处已经过去了近4年时间。在这4年里,这家由法国与意大利合资成立的涡桨飞机巨头一直积极寻求重返中国市场,但距离真正的“开花结果”似乎总差“临门一脚”。
不过,王旗并不担心。作为ATR中国区销售副总裁兼首席代表,他一方面耐心地带领团队做着飞机的市场推广工作;另一方面,也一直在为中国支线航空的发展出谋划策。
毕竟对ATR的销售来说,“单机性能不是问题,难度最大的是如何建立一个良性的支线运营生态”。王旗说,这是一个系统性问题,不是一朝一夕可以解决的。
从王旗那里得到的好消息是,全新升级的ATR-600飞机已经获得了首份来自中国客户的订单。如果顺利的话,明年上半年就可以看到它在中国运营的身影。
2018年参加中国巡演的ATR42-600
缺席的背后
尽管在中国有过短暂的运营史,但自2011年南航最后一架ATR72退出运营以来,中国市场上就再没有ATR的飞机运营过。
与之形成鲜明对比的是,根据ATR提供的数据,近10年来,ATR飞机占据了全球涡桨飞机75%的订单份额,以及90座以下支线飞机35%的订单份额。作为最主流的涡桨支线飞机,ATR30多年来共售出1700多架飞机,在超过100个国家拥有200多家运营商。
值得一提的是,ATR全球运营商的数量仅次于空客A320系列飞机,甚至超过了波音737NG系列飞机。庞大的运营商数量意味着ATR在支线市场上是一款普及度很高的机型,受到了业界的广泛认可。
在中国,ATR的缺席并不奇怪,毕竟90座以下支线飞机在整个机队中所占的比例也只有可怜的2%,远远低于北美、澳大利亚、欧洲的33%、31%、16%。支线飞机数量稀少背后,是长期以来中国民航干支发展不平衡的结果。
王旗说,中国民航机场的客流量高度集中于排名前50的干线机场,占全国总量的90%。而排名后100的民用机场的客流量仅占全国总量的1.5%。更重要的是,在本来就为数不多的600公里以内的支线航线上,大多使用的却是像波音737、空客A320这样150座左右的干线喷气窄体客机,只有12%使用的是90座以下的支线飞机。而在北美和澳大利亚,这个比例则分别达到了62%和81%。
“在支线航线上使用干线飞机运营的成本很高,导致航空公司无法盈利,缺乏运营热情,长期依赖地方政府补贴”。王旗告诉记者,要改变这种情况,实现市场化的经营,首先要做的是引进合适的机型。
事实上,ATR这样的涡桨飞机非常适合国内支线和通航短途运输的运营。在短航距、低高度、高频次的600公里以内的支线航线上,涡桨飞机拥有比喷气式飞机更高的燃油经济性。“由于支线航线的巡航时间相对较短,喷气式飞机的速度优势无法充分发挥,飞行时间仅比涡桨飞机少10分钟~15分钟,但油耗巨大。同时,高频次的起降也极大地提高了喷气式飞机发动机的维修成本”。
为了改变中国旅客和业内人士对涡桨飞机老旧、落后的印象,去年11月,王旗和他的团队组织了一场热度颇高的ATR-600飞机云南高高原演示飞行。王旗告诉记者,全新的ATR-600已经拥有了最先进的驾驶舱、客舱和相关设备。在丽江到香格里拉的航路上,这架飞机还模拟了单发飘降。“ATR的性能和舒适度完全不输喷气式飞机,业内人士能看出我们的专业性”。
2018年参加中国巡演的ATR42-600
市场的作用
“我们已经意识到大家对涡桨飞机的认识开始改变了”。中国市场的潜在需求与政府的支持政策也让王旗觉得ATR有文章可做。他坦言,高铁从来不是ATR的威胁,它是连接大城市的交通方式,其覆盖的范围与民航年客流量前50名的机场高度重合。而ATR飞的是小支线,疏通的是大动脉周边的“毛细血管”,与高铁是互补的关系。
王旗在新疆、内蒙古、云南、黑龙江这些地广人稀或地形复杂的地区,以一些中型城市为圆心、800公里为半径“画圈”,发现除了千万级机场和高铁沿线的机场以外,圈内仍有几十个支线机场。它们通常处于半闲置状态,需要足够的航空连接去激活。“其实,中东部发达地区的一些中小城市发展支线的需求同样旺盛,当地的经济更发达,航空出行的可承受能力更高”。
货运亦是如此。作为电子商务交易规模最大的国家,中国的支线货机数量几乎为零。然而,在占据全国98%货运量的排名前50的机场以外,众多中小机场几乎没有货机服务。王旗认为,像ATR这样的小型货机仍有巨大的机会。
在这种背景下,利用专业的预测工具,ATR在2018年作出预测:2018年~2037年,中国将需要1100架涡桨飞机。市场是有的,但目前中国支线航线长期依赖政府补贴的“输血式”经营是不可持续的。王旗表示,如何盘活这一市场是一个系统性工程,需要技巧、耐心和投入,这对中小机场和地方经济的发展也将起到“四两拨千斤”的作用。
在这方面,与中国一度有同样困扰的邻国印度作出了很好的示范。印度政府于2016年推行了一个名为“UDAN”的项目,旨在发展支线机场和刺激支线航线,向民众提供可支付的航空连接,同时推动各邦的基础设施建设和当地经济发展。
ATR连同我国行业专家为此专门走访了印度。UDAN项目恰恰是通过让涉事各方一起参与、履行各自的职责,从而根本性地解决支线航线发展中的系统性问题。项目规定,由中央政府、邦政府制定政策,提供税费减免和基础设施建设;参与机场需要向管理部门表明参与意愿,并减免起降、导航等费用;航空公司则需要分析市场需求,自行设计航线并参与招投标,以获得运营资格。“财政会根据航线的不同类别,给予航班的一半座位且不超过某一数量上限的补贴,并对补贴航段长度设定上限。这样航空公司自然会选用合适的机型来运营,因为盲目使用大飞机将无法盈利”。
这个项目在某种程度上保持了支线市场的竞争力和活力,也给了航空公司经营的空间。王旗透露,他正在与业内人士一起研究,希望推行中国版的UDAN项目。“支线航线短期盈利是微薄的,但率先占有航线资源,将旅客运送至更大的航线网络中去,在长期看来是有网络集成收益的”。
ATR图卢兹总装线
新构型的机会
面对短期仍有较大发展阻力的支线市场,为了更快地进入中国,ATR另辟蹊径,将目光投向了当下快速发展的短途运输市场。2017年,ATR推出了ATR42-600的30座构型。该机型将业载限定在3.4吨,就此成为一款满足我国CCAR-135部运行规范的通航短途运输机型。
“做支线的门槛还是太高了!”王旗说,这款机型为CCAR-135部运营提供一种类似于CCAR-121部运营的创新模式。无论是从公司筹建、飞机引进,还是从航线运营来讲,CCAR-135部公司办手续更便捷、受限更少、门槛更低、投入更少,可以快速建立起航空公司运营所需要的成熟团队。
此外,ATR是航校飞行员到CCAR-121部飞行员过渡的最佳培养平台,公司可以更快速地通过自身能力培养机长,从而节省了大量的成本。公司运营和市场培育成熟之后,有意转型成为CCAR-121部公司也是非常容易的事,前期投入都可以直接用于CCAR-121部的运营。
事实上,ATR42-600机型的30座短途运输构型的目标客户并不是常规意义上的通航企业,而是那些未来有意向CCAR-121部支线运营发展的跨界公司。“从这个角度讲,ATR是给他们降低了门槛。无论是投资金额还是人员配备,对他们来说,ATR是技术和安全运营标准最高,同时综合投资最少的机型”。
目前,全新的ATR-600正在取证中,预计将于今年底或者明年上半年获得中国民航局的适航许可。王旗透露,除了已经确定的一家客户以外,今年内有希望再“突破”一两家。在飞机交付后,ATR就将开始建立本地化的客户支援体系。受益于空客公司在中国完善的售后布局,ATR可以“站在巨人的肩膀上”,快速构建培训和航材方面的支援体系。
王旗说:“路线图很清楚了,工作还要一点一点做。”ATR的返华之路或许就是中国支线回归支线之路,有目标和希望,也需要十足的耐心。(《中国民航报》、中国民航网 记者程婕)
责任编辑:wanglei
000
推荐新闻:
汉莎公关机组首度亮相中国,复古制服秀庆祝“...
美国航空订购85架波音737-10
荷兰皇家航空通过采用人工智能减少食物浪费
首尔航空去年营业利润创新高
柬埔寨去年民航客流量增长2.6倍
阿联酋航空与温布尔登网球锦标赛达成协议
泰国六大机场1月客流量同比增长20%
日本两大航空前三财季净利润大增
柬埔寨2024年游客人数将激增
阿提哈德航空将推出加强版常旅客计划
芬兰航空任命新的首席执行官
阿联酋航空计划今年全球招聘5000名空乘
埃及议会呼吁埃及航空进行重组
去年全球国际旅游恢复至疫情前近九成
乌海机场真情服务获赞誉
民航华东局机关服务中心党委召开党员大...
民航江苏监管局完成邮航南京维修系统年检
通辽机场开展学雷锋志愿服务活动
百色机场积极引入货运代理业务
首都机场安保公司全力护航“开学季”客...
首都机场安保公司货邮科:强化科室、班...
2022年中国民航报社有限公司负责人薪酬...
2022年中国民航报社有限公司工资分配信...
呼和浩特机场公共区管理部多措并举全力...
春节值医线 常州机场医疗救护中心全力保...
首都机场安保公司:浴“雪”奋战 全力护...
首都机场安保公司火焰班组:聚青春之火 ...
天津空管分局完成龙年首场降雪保障工作
民航华北空管局气象中心工会开展春节慰问
呼伦贝尔机场召开节前廉洁教育提醒专题会
十堰武当山机场全力做好跑道机坪除冰雪工作
郑州机场投放免费手推车方便婴童开心出行
包头机场精心布置 喜迎春节氛围浓
江西航空快速处置 守护旅客生命安全
返回首页
中国民航报社有限公司 版权所有 京ICP备05024158 京公网安备 11010502030065号 互联网新闻信息服务许可1012006036 网络视听许可证0113657
本网站所刊登的《中国民航报》及“中国民航网”各种新闻、信息和各种专题专栏资料, 均为中国民航报社有限公司版权所有,未经协议授权,禁止下载使用。
制作单位:中国民航网 办公电话:010-67355289 传真:010-67355289 通信地址:北京市朝阳区十里河2264信箱 邮政编码:100122
违法和不良信息举报电话:010-67355289 举报邮箱:news@caacnews.com.cn 中国互联网举报中心 常年法律顾问—北京市安理律师事务所
分享到:分享到百
ATR的理解和应用,疑问? - 知乎
ATR的理解和应用,疑问? - 知乎首页知乎知学堂发现等你来答切换模式登录/注册投资期货金融期货交易量化交易ATR的理解和应用,疑问?我对于ATR的理解和应用上碰到了下面的问题 我理解的ATR,真实波动幅度均值: 真实波动幅度均值(ATR)通常以14个时段为基础进行计算,这个时段可以…显示全部 关注者53被浏览21,835关注问题写回答邀请回答好问题 2添加评论分享10 个回答默认排序墨竹剑客666还未归隐的半吊子独立投资人 关注本来我是懒得回答这种问题的。我想直接了当的跟你说。不要研究这个了,没有用的。可是想了想,这是非走不可的弯路。还是说一点点吧。1、现代的交易,跟那个年代的交易已经完全不同了。表现在资本的强大。我可以不负责任的说,只要资本愿意,它可以操纵世界上任何一种商品的价格。换句话说,世界上所有的商品的价格,都是处于操纵中的。你所看到的,都是假象。2、做交易想要赚钱,分为两种,一种是趋势,一种是炒单。原理大概介绍一下。先说炒单。就是抓大资金平仓或者开仓时候,引发的量化跟单,会引发一个小小的趋势。可能会有4-10个价格,运气好甚至会有一个悬崖出现,一单可以赚10%,炒单的目的就是抓这种趋势,本质上就是跟庄。炒单的要诀就是等待爆发点,发现爆发后马上跟进,如果发现是假突破,原价平仓走人,最多亏2个点。如果发现小趋势不走了,要马上走人。很多人只吃固定利润,不贪心,盈亏比3:2,甚至1:1。比如赚2个价位就止盈。盈利纯粹靠直觉,成功率。趋势交易。寻找世界上的不合理现象,并且时刻关注新闻,以及靠技术分析寻找转折点,并在拥有一定利润后撤离。请先相信,所有商品的价格是受到操纵的。因此。趋势交易的本质,仍然是跟庄。但是,不同之处在于。资本无法肆无忌惮的操纵价格,假如它肆无忌惮,就会遭到监管部门的惩罚。因此,它只会在爆发消息后开始操纵市场,甚至于,可能消息就是它本身创造的,然后进行肆无忌惮的操纵(表面上看起来合法,比如沙特的原油设施被炸了,那么原油涨个10%,很合理吧)。再举个例子,中国的房子了解一下。2019的黄金,原油,铁矿石,白糖,镍,棕榈。请参考新闻做出解读。假如你是主力资金,或者产业客户,你会如何操作。ATR,是一种资金管理的方法。其实没多大用。你首先要做的不是技术分析,不是资金管理,不是学会止损。而是学会,如何正确的做交易。要学会,追随强者。要学会,挨打站稳。编辑于 2019-11-21 15:36赞同 132 条评论分享收藏喜欢收起知乎用户你从时间序列的角度理解,在时刻t ATR是一个数值,而不是一个变动,7个ATR就是在时刻t ATR的值加上350日平均收盘价。发布于 2017-02-20 20:00赞同添加评论分享收藏喜欢